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Abstract

An algorithm is devised to maintain a correct spatial distribution of computational particles in hybrid particle/finite-

volume (FV) probability density function (PDF) methods for chemically reacting turbulent flows. The approach is, by

design, compatible with existing FV computational fluid dynamics (CFD) codes that are used to model practical en-

gineering flows in complex geometric configurations. The algorithm is suitable for general three-dimensional incom-

pressible or compressible, steady or time-dependent flows using structured or unstructured, stationary or deforming

computational meshes. It is compatible with a variety of element shapes commonly used in research and engineering

CFD codes including hexahedra, prisms and tetrahedra. Robustness, accuracy and efficiency of the approach are

demonstrated via computations for several two- and three-dimensional steady and unsteady flow configurations using

computational meshes that vary in element type and in mesh quality. Both composition PDF and velocity PDF methods

are employed. This work broadens the accessibility of PDF methods for practical turbulent combustion systems.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Turbulence closure based on the solution of a modeled probability density function (PDF) transport

equation originated with the work of Lundgren [1]. Subsequently, PDF methods for chemically reacting

and non-reacting turbulent flows have been developed by several researchers (see [2] for references).

And in their modern form, PDF methods for chemically reacting turbulent flows, including their as-

sociated Lagrangian particle-based solution methods, now largely follow the approach developed by Pope

and coworkers.
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A benefit of PDF methods for turbulent reacting flows is that chemical reaction and other one-point

processes (e.g., radiative emission) appear in closed form. Advantages of PDF-based modeling for dealing

with finite-rate chemistry and turbulence/chemistry interactions have been amply demonstrated over the
preceding 15–20 years. Most PDF modeling studies reported to date have been limited to canonical flow

configurations (e.g., statistically stationary axisymmetric jet flames [3]), although some applications to more

complex configurations (three-dimensional time-dependent flows [4] and/or realistic combustion-device

geometry [5]) have appeared.

Application of PDF methods to complex engineering flows of practical interest has been hindered by the

unconventional Lagrangian particle-based methods that have been developed to solve PDF transport

equations. To bring the benefits of PDF methods to bear in such flows, it is desirable to integrate the

particle-based solution schemes into existing grid-based research and engineering computational fluid
dynamics (CFD) codes. Hybrid particle/finite-volume (FV) algorithms have been developed for that pur-

pose. While hybrid PDF algorithms have been available for many years [6–8], early approaches suffered

from poor efficiency, robustness and accuracy. In part, this may be because they failed to respect funda-

mental requirements for consistency between the particle and FV representations that are implicit in the

underlying mathematical/physical formulation. More recent work has addressed key numerical method and

physical modeling issues in hybrid PDF methods. This includes particle/FV consistency and assessment of

errors and convergence rates in up to two-dimensional statistically stationary flows [9–12], mean estimation

and particle tracking for three-dimensional time-dependent flows using unstructured deforming meshes [4],
and extension to thermal radiation and turbulence/radiation interactions [13]. However, significant work

remains to realize efficient, robust and accurate hybrid schemes that are suitable for general three-

dimensional time-dependent flows. In particular, an algorithm has been lacking to enforce a key consistency

requirement in hybrid particle/FV PDF methods: namely, that the local mass or volume distribution must

remain consistent between the Lagrangian (particle) and Eulerian (FV) representations.

The purpose of this research has been to broaden the accessibility of PDF methods so that they can be

brought to bear in complex engineering flows. Towards that end, an efficient, robust and accurate particle/

FV mass consistency algorithm is presented that is suitable for three-dimensional time-dependent flows on
unstructured deforming computational meshes and that is compatible with multiple FV element types

(hexahedra and degenerate hexahedra, including tetrahedra). Other issues in hybrid PDF methods also are

addressed. The algorithm has been developed primarily with segregated pressure-based FV CFD codes in

mind, although a similar approach can be followed for other solver types. It is intended primarily for

‘‘tightly coupled’’ hybrid particle/FV methods [10] where the particle code is run on each FV time step.

The remainder of the article is organized as follows. Salient aspects of PDF methods are reviewed in

Section 2, and the nature of the mass consistency constraint is discussed. The CFD code that has been used

in the present study is introduced in Section 3. The new mass consistency algorithm is developed in Section
4, and other issues in using particle methods with unstructured CFD codes are addressed in Section 5. The

benefits and significance of the new algorithm are illustrated in Section 6 via computations for canonical

configurations (a lid-driven cavity and an axisymmetric free jet) and for a simplified reciprocating piston–

cylinder assembly (an idealized IC engine). In the final section, results are summarized and conclusions are

drawn.
2. PDF methods for chemically reacting turbulent flows

For concreteness, we consider a single-phase (gaseous) multicomponent chemically reacting mixture. A

low-Mach-number approximation is invoked so that spatial gradients in pressure do not affect the ther-

mochemical equations. Then the mixture mass density q, specific heats cp and cv, and species chemical

production rates S are functions only of composition (e.g., species mass fractions), enthalpy and a reference
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pressure p0 that is, at most, a function of time: p0 ¼ p0ðtÞ. Species mass fractions and enthalpy comprise the

s composition variables for the system. We limit our attention to high-Reynolds-number flows; turbulent

transport of mass, momentum, chemical species and enthalpy dominate molecular transport processes.
Thermal radiation is neglected.

The PDF considered is the Eulerian one-point joint velocity-composition PDF of three velocity com-

ponents U ¼ Uðx; tÞ and s scalar composition variables / ¼ /ðx; tÞ: fU ;/ðV ;w; x; tÞ. This PDF is a density in

the 3þ s-dimensional V � w phase space; it is, in addition, a function of up to three spatial coordinates x
and of time t. The composition space can be large in the case of hydrocarbon-air systems. For example, 550

chemical species are considered in a recent detailed n-heptane/air oxidation mechanism [14]. Composition

PDF�s and velocity-composition-frequency PDF�s [15] also can be treated using the algorithm that is de-

veloped here; thermal radiation and turbulence/radiation interactions can be considered [13,16]; and a
similar approach can be used for particle-based filtered-density-function methods that are being developed

as subgrid-scale models for large-eddy simulation [17–21].

Starting from the Eulerian partial differential equations (PDEs) expressing conservation of mass, mo-

mentum, chemical species and enthalpy, a transport equation for f � fU ;/ðV ;w; x; tÞ can be derived [2]:
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Here summation is implied over repeated indices i, j or a within a term (i; j ¼ 1; 2; 3; a ¼ 1; . . . ; s).
Angled brackets hi denote conventional mean quantities, and a tilde � is used to denote a density- (Favre-)

averaged mean quantity. Mean quantities are related to the PDF by,

hQi ¼ hQðx; tÞi ¼
Z
w

Z
V
QðV ;wÞfU ;/ðV ;w; x; tÞdV dw;

~Q ¼ ~Qðx; tÞ ¼ hqi�1

Z
w

Z
V
qðw; p0ÞQðV ;wÞfU ;/ðV ;w; x; tÞdV dw;

ð2Þ

where integration is over the entire 3þ s-dimensional phase space. Fluctuations with respect to the con-

ventional mean are denoted using a single prime 0 and double primes 00 are used for fluctuations about a

Favre-mean quantity,

Q0 ¼ Q0ðx; tÞ ¼ Qðx; tÞ � hQðx; tÞi;
Q00 ¼ Q00ðx; tÞ ¼ Qðx; tÞ � ~Qðx; tÞ:

ð3Þ

The term op0

oxj
jV ;w

D E
represents the mean of the fluctuating pressure gradient, conditioned on the velocity

being equal to V and the composition being equal to w. Similarly,
osij
oxi

jV ;w
D E

and
oJai
oxi

jV ;w
D E

are the con-

ditional means of the divergence of the viscous stress tensor sij and of composition variable a�s diffusive flux
J a, respectively. Transport in physical space by the velocity V , transport in velocity space by the body force

ðgÞ and the mean pressure gradient ðohpi=oxjÞ and transport in composition space by chemical reaction

(chemical source terms S) appear in closed form; these are the terms on the left-hand side of Eq. (1). On the

right-hand side are the terms to be modeled. These represent transport in velocity space due to the fluctuating

pressure gradient and molecular viscosity, and transport in composition space by molecular diffusion.

Because of its large dimensionality (up to 7þ s independent variables), the PDF transport equation is

not amenable to numerical solution using conventional grid-based methods. Lagragian Monte Carlo

particle methods have been developed as an alternative.
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2.1. Lagrangian particle representation

The turbulent reacting flow is represented by a large number Np of computational particles. The ith
particle is assigned a mass mðiÞ; in the simplest case, mðiÞ ¼ m=Np where m is the total system mass. In

addition, each particle is characterized by three position coordinates xðiÞðtÞ, three velocity components

U ðiÞðtÞ and s scalar compositions /ðiÞðtÞ (again, species mass fractions and enthalpy).

Each computational particle can be interpreted as a delta function discretization of the PDF. Formally,

a discrete mass density function F� is introduced

F�ðV ;w; x; tÞ �
XNp
i¼1

mðiÞd V
�

� U ðiÞðtÞ
�
d w
	

� /ðiÞðtÞ


d x
�

� xðiÞðtÞ
�
; ð4Þ

where dðx� xðiÞðtÞÞ is a three-dimensional delta function at the particle location, and similarly for

dðV � U ðiÞðtÞÞ and dðw� /ðiÞðtÞÞ. For a consistent discrete representation, we require that,

hF�ðV ;w; x; tÞi ¼ qðw; p0ÞfU ;/ðV ;w; x; tÞ: ð5Þ

In an infinitesimal time increment dt, the position, velocity and composition of each particle evolve
according to,

dx� ¼ U �dt;

dU � ¼ ðg �rhpi�=qð/�; p0ÞÞdt þ A�
p0;mixdt;

d/� ¼ Sð/�; p0Þdt þ d/�
mix

:

ð6Þ

Here the superscript � refers to any particle, 16 i6Np, and a mean quantity with superscript � refers to

the mean value evaluated at the particle location: e.g., hpi� ¼ hpðx�ðtÞ; tÞi. The term A�
p0 ;mix denotes a particle

acceleration due to the fluctuating pressure gradient and molecular viscosity (velocity mixing); and d/�
mix

is

the increment in composition due to molecular diffusion (scalar mixing). A�
p0 ;mixdt and d/�

mix
are modeled

using either stochastic or deterministic processes. And these models for particle behavior provide effective

closure models for the terms that appear on the right-hand side of Eq. (1).

2.2. Hybrid particle/FV methods

Hybrid methods seek to take advantage of the respective strengths of particle-based and grid-based

solution procedures. For a particle method, strengths include exact treatments of advection in physical

space and of one-point source terms in the PDF transport equation. For grid-based methods, robust

procedures have been developed to deal with the (linear) coupling between the mean continuity and mean

momentum equations through the mean pressure. Therefore, it is expedient to decompose the particle

velocity into its mean and fluctuating components,

U �ðtÞ ¼ ~U � þ u00�ðtÞ; ð7Þ

and to employ a conventional grid-based CFD solver to compute the mean velocity field ~Uðx; tÞ while using
a particle method for the fluctuating velocity u00�ðtÞ. Scalar composition variables can be decomposed

similarly. Formally, the PDF transport equation (Eq. (1)) can be recast as an equation for the PDF of the

fluctuating velocity and composition, and the particle equations (Eq. (6)) can be recast as equations for

particle fluctuating velocity and composition (see [10], for example).

Here the focus is on the advection of particles in physical space by the FV mean velocity field.
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2.3. The spatial distribution of particle mass

In the representation outlined above, each computational particle represents a specified mass of fluid;
this is a mass density function method. Therefore, the distribution of particle mass (or volume) in physical

space is not arbitrary; it must remain consistent with the fluid mass (or volume) distribution. Specifically,

the condition,Z
w

Z
V
qðw; p0ÞfU ;/ðV ;w; x; tÞdV dw ¼ hqðx; tÞi ð8Þ

must be satisfied for all time for fU ;/ðV ;w; x; tÞ to remain a valid PDF. In the discrete representation, the
consistency requirement can be written as,Z

w

Z
V
hF�idV dw ¼ hqðx; tÞi: ð9Þ

While the mass consistency condition can be expressed in several alternative forms (e.g., [2,12,22]), Eqs.

(8) and (9) are appropriate for present purposes. The initial distributions of particle masses and of particle

locations in physical space are prescribed in a manner that is consistent with the initial spatial distribution

of mean fluid mass (Section 5). Then in order for the discrete particle representation to remain a valid
discretization of the modeled PDF transport equation, it is necessary that the spatial distribution of mean

particle mass remain consistent with the distribution of mean fluid mass for all time.

The conditions under which an initially valid particle distribution will remain valid as the system evolves

in time have been enumerated by Pope [2]. An evolution equation for the particle mass density distribution

in physical space has been derived by Haworth and Pope [22]. An analysis for constant-density flow is

presented in Chapter 12 of [23]. And this and other consistency issues have been developed further by

Muradoglu et al. [12]. For present purposes, the salient result of these analyses can be summarized as

follows: For an initially valid particle distribution to remain valid as the system evolves in time, it is
necessary and sufficient that the particle system evolves in a manner that is consistent with the mean

continuity equation. The mean continuity equation, in turn, is satisfied if and only if the mean pressure field

satisfies the Poisson equation that results from taking the divergence of the mean momentum equation.

The mean continuity, mean momentum, and mean pressure equations are,

ohqi
ot

þ ohqi~ui
oxi

¼ 0; ð10Þ
ohqi~uj
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oxi

¼ oðhsiji þ sT ;ijÞ
oxi
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Here sT ;ij ¼ �hqigu00i u00j is the effective turbulent stress.

2.4. Implications for hybrid particle/FV methods

In the present approach, consistency among the mean pressure, mean velocity and mean density fields is

ensured (at a control volume, or element, level) by a FV algorithm. From a practical point of view, then, the
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mass consistency condition implies that the mean velocity field that is used to advect particles in physical

space must be consistent with the mean continuity equation. The mean velocity field for particle advection

is obtained via interpolation from the FV-computed mean velocity field. Thus this interpolated mean ve-
locity field should satisfy Eq. (10). While this may appear straightforward, there are several subtleties.

First, it is not straightforward to reconstruct a continuous mean velocity field that satisfies Eq. (10)

locally from discrete values available on a mesh in a multidimensional flow. To illustrate this, consider the

two-dimensional steady incompressible example shown in Fig. 1. There discrete values of the mean velocity

are available at the four vertices of the unit square, and bilinear interpolation is used to reconstruct a

continuous mean velocity field in the interior of the square. Edges are aligned with the x ¼ x1 and y ¼ x2
coordinate directions, as shown. For simplicity, mean velocity components in the x1 and x2 directions are
denoted by u and v, respectively. The mean continuity equation reduces to ou=oxþ ov=oy ¼ 0. Here
ou=ox ¼ ðy � 1Þu1 þ ð1� yÞu2 þ yu3 � yu4 and ov=oy ¼ ðx� 1Þv1 � xv2 þ xv3 þ ð1� xÞv4. Since ou=ox is a

function only of y and ov=oy is a function only of x, the mean continuity cannot be satisfied locally at every

point in the unit square using this representation. (An alternative velocity interpolation scheme that re-

solves this issue for two-dimensional rectangular elements has been presented by Jenny et al. [11].)

Second, in FV methods the governing PDEs are satisfied only in an integral sense over control volumes

that correspond to the computational cells or elements. In a consistent hybrid particle/FV method, a correct

particle distribution should be enforced at the same level. The mean continuity equation can be integrated

over an n-faced FV computational element e to yield,

dme

dt
¼ �

Xn

f¼1

Qe;f ;FV : ð13Þ

Here Qe;f ;FV is the mass flowrate (mass per unit time) leaving FV element e across face f. Element-face

mass flowrates or fluxes are central to FV CFD formulations. These flowrates are central to the present

particle/FV mass consistency algorithm as well.
And third, even if the mean velocity field used for particle advection did satisfy the mean continuity

equation locally, or if the implied face fluxes satisfied Eq. (13) at the element level, that would not guarantee
Fig. 1. A two-dimensional interpolation example. Finite-volume mean velocity components u and v are available at the four vertices of

the unit square. A continuous mean velocity field field for particle advection in the interior of the square is constructed using bilinear

interpolation.
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consistency between the particle mass/volume distribution and the fluidmass/volume distribution for all time.

The two may diverge as a result of discretization errors and other numerical inaccuracies (e.g., finite number

of particles; noise from stochastic models used to simulate particle acceleration, etc.). This will be demon-
strated and discussed further in the examples presented below (Section 6). An essential ingredient of the

present algorithm is a particle position correction that drives any local deviation between the mean particle

mass and the fluid mass distributions to zero at the element level, regardless of how the deviation arises.

In the absence of an algorithm to control the spatial distribution of particles, large deviations between

the mean particle mass distribution and the fluid mass distribution (e.g., the mean density field) arise in

hybrid particle/FV computations. The problem is particular acute for multidimensional flows, and on

computational meshes where there are large variations in element volumes and/or large departures from

orthogonality. The present algorithm is designed to maintain consistency between the spatial distribution of
mean particle mass and the FV mass at the FV element level.
3. The FV code

The algorithm developed here is intended to be as generic as is practicable. Where specific choices had to

be made, these have been based on the CFD code that is the immediate target of this research. Thus a brief

overview of the underlying FV code is provided here. Details can be found in [24–26].
The CFD code solves the coupled PDEs for a chemically reacting multicomponent gas mixture using a

FV method. The equations are formulated in terms of density-weighted (Favre-averaged) mean quantities.

The fundamental equations are: a pressure correction equation (Eq. (12), reformulated as an equation for a

pressure difference); the mean momentum equations (Eq. (11)); a mean internal energy or enthalpy

equation; and mean chemical species equations. Mean density is obtained using an equation of state.

An iteratively implicit pressure-based sequential (segregated) solution procedure is used. The procedure

accommodates incompressible and/or compressible flows and steady and/or transient flows. It is applicable

for essentially arbitrary Mach number. Pressure/momentum/continuity coupling is accomplished using a
pressure-corrector scheme patterned after PISO [28,29]. The equations are solved on an unstructured non-

orthogonal mesh of convex principally six-faced hexahedral elements; edge and/or face degeneracies are

permissible (prism, pyramid and tetrahedron; Fig. 2). Cell-centered co-located variables are employed. The
Fig. 2. Finite-volume element shapes. Logically six-faced convex volume elements (hexahedra) are employed that can be mapped to

the unit cube (a). Elements can be non-orthogonal (b). Edge and/or face degeneracies are allowed (lower row) including prisms (d),

pyramids (e) and tetrahedra (f).
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discretization is first-order in time and up to second-order in space. Additional features that have been

implemented to accommodate complex geometry and flow include non-aligned interfaces [30,31] and so-

lution-adaptive local mesh refinement [32]. Available physical models include two-equation turbulence
models and a variety of turbulent combustion models.
4. A mass consistency algorithm

A three-stage procedure is used to establish a mean velocity field for particle advection.

• Stage 1: Establish a continuous approximation to the FV mean velocity field using discrete values avail-

able at mesh vertices and appropriate interpolation functions.
• Stage 2: Compute a correction velocity field to enforce consistency between FV element-face mass flow-

rates and the element-face mass flowrates implied by the Stage 1 velocity field.

• Stage 3: Monitor the deviation between FV element-level mass and the mean particle mass in each ele-

ment, and compute a second correction velocity field to drive the deviation towards zero.

This can be thought of as a predictor–corrector scheme, with Stages 1 and 2 providing a ‘‘predicted’’

mean velocity field for particle advection, and Stage 3 providing a ‘‘corrected’’ field that enforces the el-

ement-level particle/FV mass consistency requirement.

4.1. Required FV quantities

Element-face mass fluxes are central to FV CFD schemes, and it is reasonable to expect that this

quantity is available from any underlying FV code. The FV mass flowrate out of element e through face f is

denoted by Qe;f ;FV (Eq. (13); dimensions of mass per unit time).

It is presumed that FV dependent variables are available at mesh vertices. In the case of an element-

centered CFD code (such as the present one), vertex values are established by interpolation. For example,

the value of a FV mean quantity U at vertex l, Ul, can be determined from element-centered values Ue by,

Ul ¼
X
e2l

Ke;mUe
X
e2l

Ke;m

,
: ð14Þ

Here the notation e 2 l denotes the set of FV elements that share vertex l; m is the local element vertex id

ð16 m6 8Þ corresponding to global vertex id l, and Ke;m is the volume centroid weight factor for vertex m
of element e (Eq. (A.11)). For vertices that lie on boundary faces, the actual boundary values are assigned
to Ul.

Trilinear basis functions are used to establish continuous fields of mean mass density and mean velocity

within each element from FV vertex values; see Appendix A and Fig. 3. This approach accommodates

convex hexahedral elements, and any legitimate (non-zero volume) edge and/or face degeneracies of

hexahedral elements including tetrahedra, in a single consistent formulation. As pointed out earlier,

trilinear basis functions locally are incompatible with the mean continuity equation. That is not an issue in

the present algorithm.

4.2. Stage 1

The Stage 1 mean velocity field is determined by trilinear interpolation from FV vertex values,

Ueðx; tÞ ¼
X
l2e

be;mðnÞUlðtÞ; ð15Þ



Fig. 3. Element and face conventions. Left: volume element conventions. Vertex numbering (1–8), face numbering (circled, 1–6) and

local logical coordinates ðn1; n2; n3Þ for a six-faced finite-volume element. Right: face conventions. For face 1: abcd ¼ 8415 and

ðg1; g2Þ ¼ ð1� n3; 1� n2Þ; for face 2: abcd ¼ 6237 and ðg1; g2Þ ¼ ð1� n3; n2Þ; for face 3: abcd ¼ 6512 and ðg1; g2Þ ¼ ð1� n1; 1� n3Þ; for
face 4: abcd ¼ 3487 and ðg1; g2Þ ¼ ð1� n1; n3Þ; for face 5: abcd ¼ 3214 and ðg1; g2Þ ¼ ð1� n2; 1� n1Þ; and for face 6: abcd ¼ 8567 and

ðg1; g2Þ ¼ ð1� n2; n1Þ.

164 Y.Z. Zhang, D.C. Haworth / Journal of Computational Physics 194 (2004) 156–193
where the be;mðnÞ are the trilinear basis functions given by Eq. (A.2). Throughout this section, angled

brackets and tildes denoting conventional and density-weighted means, respectively, are dropped for

clarity. Thus q represents the mean fluid density hqi and U represents the density-weighted mean fluid

velocity ~U .

The Stage 1 mean velocity field is continuous across adjacent elements that share a common face, and

hence through the entire computational domain.

4.3. Stage 2

The mass flowrate out of element e across element face f that is implied by the trilinear mapping is

denoted by Qe;f ;TL. This flowrate is obtained by integration over the element face: Qe;f ;TL ¼
R
f qU � dA, with

the qU product being evaluated from FV mean vertex values using the trilinear basis functions. The result

can be expressed in terms of the mean mass densities and velocities at the four vertices defining face f, and

of the outward-pointing unit normal vector to the face ne;f ¼ ðne;f1 ; ne;f2 ; ne;f3 Þ (Eq. (A.5)):

Qe;f ;TL ¼ Af
X
l2f

kf ;mqlðUl
1n

e;f
1 þ Ul

2n
e;f
2 þ Ul

3n
e;f
3 Þ: ð16Þ

Here Af is the face projection area (Eq. (A.4)) and kf ;m is the area weight factor for local vertex m
(corresponding to global vertex l) of face f (Eq. (A.8)). In general, the face mass flowrate Qe;f ;TL given by

Eq. (16) is not equal to the FV element-face mass flowrate Qe;f ;FV.

An element-level correction velocity field is introduced to enforce consistency between the FV element-

face mass flowrates and the element-face mass fiowrates implied by the Stage 1 velocity field. Stage 2

correction quantities are denoted using the hat ^ notation. An element-level mass flowrate correction for

face f is defined in terms of element-level correction velocities for the four vertices incident on face f by,

Q̂e;f � Qe;f ;FV � Qe;f ;TL ¼ Af
X
l2f

kf ;mqlðÛ e;m
1 ne;f1 þ Û e;m

2 ne;f2 þ Û e;m
3 ne;f3 Þ: ð17Þ

For each computational element, there are 24 correction velocity components Û e;m
i to be determined

(three velocity components i for each of eight vertices m) subject to six constraints Q̂e;f (six element faces f).
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Eighteen additional constraints are provided by requiring that the normal component of the correction

mass flux be uniform across each of the six faces of element e. With m1; m2; m3 and m4 denoting the four

vertices of face f (corresponding to global vertex id�s l1; l2; l3 and l4),

ql1Û e;m1
1 ne;f1 þ ql1Û e;m1

2 ne;f2 þ ql1Û e;m1
3 ne;f3 ¼ ql2Û e;m2

1 ne;f1 þ ql2Û e;m2
2 ne;f2 þ ql2Û e;m2

3 ne;f3

¼ ql3Û e;m3
1 ne;f1 þ ql3Û e;m3

2 ne;f2 þ ql3Û e;m3
3 ne;f3

¼ ql4Û e;m4
1 ne;f1 þ ql4Û e;m4

2 ne;f2 þ ql4Û e;m4
3 ne;f3 ð18Þ

provides three additional equations for each of the six faces f. While the constraint of uniform correction

mass flux across each face is somewhat arbitrary, it has the advantage of simplicity and it leads to a set of

algebraic equations that can be solved in closed form for the 24 Stage 2 correction velocity components.

Details of the algebraic solution are provided in Appendix B. As noted there, the correction velocity field is

continuous within each computational element but is only piecewise continuous through the computational

domain, in general. That is, the value of the correction velocity is not necessarily the same for each element

that shares a given vertex.

The mean velocity field used to advect particles is then the sum of the continuous Stage 1 velocity field
and the piecewise continuous Stage 2 correction velocity field. Advection of particles using this mean ve-

locity field still does not guarantee consistency between the FV element mass and the mean particle mass in

each element as the system evolves in time. For example, in the case of a first-order particle advection

scheme with zero particle fluctuating velocity, each particle�s position x� advances in time simply according

to,

x�ðt þ DtÞ ¼ x�ðtÞ þ U �Dt; ð19Þ

where U � is the mean advection velocity (sum of Stage 1 and Stage 2 velocities) evaluated at the particle�s
beginning-of-timestep position. Clearly, deviations in the particle mass distribution can build up over time,
particularly in the case of steep spatial and/or temporal gradients in mean velocity, low particle number

densities (small number of particles per FV element) and large particle Courant numbers. Here a particle

Courant number can be defined as,

C� � jU �jDt=Le; ð20Þ

where Dt is the computational timestep and Le is a characteristic length of the computational element (e.g.,

Le ¼ ðV eÞ1=3, where V e is the volume of computational element e). Even in the dense particle limit (where

deterministic errors become independent of the number of particles [33]) and with higher-order particle

advection schemes [34–36], deviations between the mean particle mass distribution and the fluid mass

distribution will develop and grow as a result of non-uniformities in particle mass distribution within FV

elements [S.B. Pope, Cornell University, personal communication, 2002]; this will be demonstrated in

Section 6. The deviations are addressed in Stage 3.

4.4. Stage 3

Stages 1 and 2 seek to establish a priori a ‘‘good’’ mean velocity field for particle advection based on the

FV mean velocity field and element-face mass fluxes. By contrast, Stage 3 is an a posteriori particle position

correction. State 3 addresses directly the deviation between element mass and mean particle mass within

each element, and redistributes the particles in physical space in a manner that drives the deviation towards

zero, without regard to how the deviation arose.
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The Stage 3 velocity correction is denoted using a double-hat ^̂notation, and is formulated in the same

way as Stage 2:

^̂Q
e;f ¼ Af

X
l2f

kf ;mql ^̂U
e;m

1 ne;f1
	

þ ^̂U
e;m

2 ne;f2 þ ^̂U
e;m

3 ne;f3


; ð21Þ

where
^̂Q
e;f

is an element-face mass flowrate. The difference between Stages 2 and 3 lies in the specification of
the face flowrates.

The fluid mass associated with FV element e is denoted by me;FV, and me;P denotes a mass of particles

associated with FV element e; a more precise specification will be given shortly. The difference between

these two masses, divided by a timescale sS3 (S3 for ‘‘Stage 3’’), is a quantity that can be interpreted as an

element-level mass residual Re,

Re � ðme;FV � me;P Þ=sS3: ð22Þ

The idea is to find a set of face flowrates
^̂Q
e;f

that will drive these residuals toward zero; then from the

face flowrates, a set of element-level correction velocities ^̂U
e;m

is constructed following the same procedure

as in Stage 2.

The computation of element-face mass flowrates to counter non-zero element-level mass residuals is

central to many FV CFD algorithms. In that case, the mass residual for each element is defined as the

difference between the net rate of accumulation of fluid mass in the element and the net efflux of fluid mass

across the element�s bounding faces. Segregated pressure-based FV schemes based on SIMPLE [37] and/or

PISO [28,29], for example, include one or more pressure/velocity corrector steps that compute corrections

to the pressure and velocity fields along with the necessary element-face mass fluxes to drive the mass
residuals to zero. This is accomplished by solving a symmetric linear system for a pressure correction field.

The result is a set of element-face mass flowrates
^̂Q
e;f

that satisfy,

Re ¼ �
X
f2e

^̂Q
e;f
: ð23Þ

In the event that this capability is not provided in the underlying FV code, a separate elliptic solver

module can be provided to solve for
^̂Q
e;f
, given Re. An advantage of using the functionality of the un-

derlying FV solver directly is that the Stage 3 velocities then are, by construction, consistent with the

underlying governing equations (the compressible Navier–Stokes equations).

The form of the equations used in the present study to compute
^̂Q
e;f

is given in Appendix C. A single

pressure corrector step is taken with the mass residuals set to Re of Eq. (22). It is emphasized that the

pressure correction field and the implied velocity field are not used to update the mean pressure and mean
velocity fields in the underlying FV code.

It remains to specify me;FV, me;P and sS3. In the most aggressive approach, me;FV ¼ me;FVðtÞ ¼ qe;FVðtÞV eðtÞ
(the instantaneous fluid mass in the FV element), me;P ¼

P
i2e m

ðiÞðtÞ (the instantaneous particle mass in the

element) and sS3 ¼ Dt (the computational time step). This corresponds to an attempt to maintain consis-

tency between element mass and particle mass on each computational timestep, and goes beyond the formal

consistency requirement that applies only to the mean particle mass distribution. With this approach, one

might anticipate relatively large Stage 3 correction velocity magnitudes and large timestep-to-timestep

variations in Stage 3 velocities as the algorithm attempts to correct for ‘‘shot noise’’ as individual particles
pass from one element to another.

A less aggressive approach is to relax the mean particle mass towards the mean FV element mass. This

can be accomplished, for example, by averaging the element and/or particle masses over specified time

windows,
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me;FV ¼
Z t

t�savg;FV

me;FVðt0Þdt0=savg;FV;

me;P ¼
Z t

t�savg;P

me;P ðt0Þdt0=savg;P
ð24Þ
and/or specifying a timescale sS3 that corresponds to several computational time steps. In addition, the

Stage 3 correction can be applied on every computational time step or less often – every N3 time steps, say

(timescale sS30 ¼ N3Dt). The timescales savg;FV, savg;P, sS3 and sS30 can be specified based on physical reasoning

(e.g., estimates of the flow timescales) or heuristically (e.g., a specified number of timesteps). Results for

several combinations are discussed in Section 6.
4.5. Steady flows

The algorithm has been developed primarily with time-dependent flows in mind. It applies immediately

to steady flows in the case where a stationary solution is obtained by time marching. Examples are provided

in Section 6. For iterative steady-flow algorithms, a similar approach can be followed with averaging over

multiple iterations replacing time averaging.
4.6. Non-hexahedral meshes

The algorithm has been designed to be compatible with edge and/or face degeneracies of convex six-

faced hexahedral FV elements. In particular, it reduces to the appropriate form in the case of tetrahedral

elements (see Appendices A and B). However, a more efficient algorithm for strictly tetrahedral meshes can

be derived directly following the same steps as outlined above and in Appendices A and B. In that case, the

natural choice for element logical coordinates and basis functions is the normalized height above the tri-

angular element faces, following standard finite-element practice (e.g., [38]).
4.7. Deforming meshes

In the case where the computational mesh deforms in time, there is an additional contribution to the FV

element-face mass flowrate from grid motion. The present mass consistency algorithm applies directly,

provided that the grid-motion element-face fluxes are included in Qe;f ;FV. That is the approach that has been

taken here.
4.8. Inflow/outflow boundaries

Special provisions are required to accommodate mass flow through the boundaries of the compu-

tational domain. At each boundary face where there is net inflow, new computational particles are

introduced such that the total particle mass introduced over the computational timestep is exactly equal

to the FV mass that enters over the timestep. And at each boundary face where there is net outflow, the

total particle mass extracted is exactly equal to the FV mass that leaves over the timestep. Thus

the total particle mass and total fluid mass in the computational domain remain equal at all times, and

the Stage 3 particle position correction (particle redistribution within the computational domain) is
applied directly with zero correction flowrates ^̂Q

e;f
imposed at faces that correspond to inflow or

outflow boundaries.
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4.9. Non-aligned interfaces and local mesh refinement

Data structures are more complicated in cases where a face is shared by more than two FV elements.
This situation arises with non-aligned interfaces [30,31] and solution-adaptive local mesh refinement via

element splitting [32], for example. This is accommodated naturally in the present vertex- and face-based

mass consistency algorithm, as long as the correct face mass flowrates are provided by the underlying FV

solver. The details are not presented here.

4.10. Comparison to Muradoglu, Pope and Caughey [12]

An alternative mass consistency correction algorithm has been published by Muradoglu et al. [12]. A
complete set of consistency conditions for hybrid particle/FV methods (beyond particle/FV mass consis-

tency) was considered in that work. That algorithm also is based on the solution of an elliptic equation with

a source term that corresponds to the difference between the particle and FV mass distributions. By contrast

to the present approach, the algorithm was aimed at ‘‘loosely coupled’’ hybrid particle/FV schemes for

statistically stationary flows; results were presented only for two-dimensional flows on structured meshes;

and the elliptic equation to be solved contained several empirical parameters.
5. Other numerical aspects

Other aspects of the hybrid particle/FV method are summarized briefly in this section. For the most

part, these follow the approaches that have been developed and implemented by Subramaniam and

Haworth [4].

5.1. Particle initialization

Particle initial masses and positions are prescribed in a manner that is consistent with the element-level

FV mass distribution. The number of particles in each element is proportional to the element volume and

the three logical coordinates for each particle are sampled from a random distribution uniform on [0., 1.]. A

maximum total number of particles NP ;max is specified, and a minimum and maximum number of particles

per element Npe are prescribed (Npe;min and Npe;max, respectively). The latter two values accommodate meshes

having large variations in element volume. Initially, then, the mass of particles within each element is

exactly equal to the FV element mass.

The specification of initial particle properties is not directly relevant to the present discussion. These also
are prescribed in a manner that is consistent with FV mean values.

5.2. Particle tracking

A particle tracking algorithm for three-dimensional unstructured stationary or deforming meshes,

large particle Courant numbers (>10, say), and large variations in FV element size (up to a factor of 106

variation in element volume) has been described in [4]. Briefly, particles are tracked from element to

element using the same trilinear basis functions that are used for the present mass consistency algorithm.
A particle leaves its current host element when the value of one of the particle�s logical coordinates

reaches zero or unity; and its new host element and initial logical coordinates in the new element are

known from the FV connectivity pointers. For expediency, the approximation described in Appendix A

has been used for all cases presented in Section 6 (Fig. 4); this has been found to result in negligible

degradation in accuracy.



Fig. 4. The logical coordinates corresponding to point P are given approximately by g1 � ha=ðha þ hcÞ; g2 � hb=ðhb þ hdÞ.
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5.3. Particle number density control

To maintain an acceptable distribution of particles as they move in physical space (NP 6NP ;max;Npe;min 6

Npe 6Npe;max for 16 e < NE, where NE is the number of FV elements), particle cloning and annihilation al-

gorithms are employed. Particles are cloned in elements having Npe < Npe;min by splitting a particle of mass

m� into two particles each having mass m�=2 and each having the same properties as the original particle:

the highest-mass particles in each element are cloned. Particles are annihilated in elements having

Npe > Npe;max by collapsing three particles selected at random (with preference given to low-mass particles)

into two particles in a manner that preserves particle mass and mean particle properties exactly and that

minimizes the reduction in second moments of particle properties (artificial ‘‘mixing’’). This annihilation

scheme does not exactly preserve the particle property distribution. However, it has the advantage of
conserving species mass and other properties at the ‘‘microscopic’’ (discrete event) level.

5.4. Mean estimation

A fundamental issue in hybrid particle/FV PDF methods (although not of direct relevance here) is the

estimation of mean quantities from noisy particle data. Several algorithms based on the same trilinear basis

functions that are used in the present mass consistency algorithm have been presented in [4].

5.5. Sorting

A significant reduction in computational time required for particle operations is realized by sorting and

reindexing particles by their host FV element on each computational timestep. In the current mass con-

sistency algorithm, for example, one then can form the required correction velocities element-by-element

(versus particle-by-particle). This also facilitates parallelization using an element-based domain decom-

position.

5.6. Summary

The sequence of operations for a single FV computational timestep is as follows: Mesh deformation and

updates to FV geometric information are performed first; the particle solution then is advanced over the
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timestep: and finally, the underlying FV hydrodynamic solution is performed. Here the FV algorithm is first

order in time. The mean velocity field (Stages 1 and 2) for particle advection uses the most recently available

FV information (i.e., from the end of the previous timestep). And the Stage 3 correction velocity field
similarly is based on the most recently available particle/FV mass residuals (post particle advection). In

practice, Stages 2 and 3 are applied simultaneously. Higher order in time would require multiple particle

steps for each FV timestep.

The computational overhead for the mass consistency algorithm essentially is that of performing one

additional pressure correction in the underlying FV solver. The additional cost in particle operations is

negligible. This overhead can be reduced further through judicious specification of convergence tolerances

in the iterative implicit linear equation solvers that are used for the mass-consistency pressure correction; in

general, it is not necessary to converge the pressure correction equation to the same accuracy as is required
for the FV hydrodynamic solution. Moreover, with the mass consistency algorithm in place it has been

found that the time spent in particle-number-density-control operations (cloning/annihilation) is reduced

significantly, and solutions can be obtained using lower particle number densities and larger computational

timesteps than otherwise would be required. Therefore, the net effect generally is a reduction in CPU time

compared to performing a hybrid particle/FV solution without the mass consistency algorithm. Timing

information is discussed for one test case in the following section.
6. Test cases

To illustrate the importance of mass consistency in hybrid particle/FV PDF methods and the robustness

and accuracy of the new algorithm, results for several flow configurations are presented. In all cases,

second-order accurate spatial discretizations are used in the underlying FV solver and first-order particle

advection schemes are used. The latter serves to emphasize the robustness of the approach. The focus is on

differences between the FV mass distribution and the particle mass distribution at the element level.

6.1. Lid-driven cavity

This constant-property two-dimensional steady-flow configuration has long served as a benchmark

validation case for CFD. The computational domain is an L � L square in x and y with zero velocity at the

bottom ðy=L ¼ 0Þ and side ðx=L ¼ 0; x=L ¼ 1Þ walls and with the top wall ðy=L ¼ 1Þ driven tangentially to

the right at a constant speed of UW (Fig. 5). The key parameter is the Reynolds number ReW � qUW L=l,
where l is the constant fluid viscosity. Here a laminar case with ReW ¼ 1000 is considered (no turbulence

model); benchmark numerical data for this Reynolds number can be found in [39] and CFD results ob-
tained using the present FV algorithm have been reported in [32]. Appropriate velocity, length and time

scales are V ¼ UW , L ¼ L and T ¼ L=UW .

The lid-driven cavity may appear to be remote from the three-dimensional time-dependent arbitrary-

geometry configurations that are the ultimate target for the algorithm. In fact, this is a deceptively chal-

lenging and revealing configuration for a Lagrangian particle method. The flow is characterized by steep

velocity gradients, no-slip walls, recirculation and ambiguity in the specification of the velocity at the in-

tersections of the fixed and driven walls. Moreover, this configuration serves to validate the non-trivial

requirement that the algorithm should yield a stationary particle mass distribution in steady flow.
Tortuous computational meshes make the problem even more challenging (Fig. 5). Four mesh topol-

ogies have been employed: uniform Cartesian meshes; ‘‘Z’’-meshes, random meshes and mixed-element

meshes. For the first three mesh types, all elements are non-degenerate six-faced hexahedra and there is a

single layer of elements in the z direction. For the mixed-element meshes, the interior FV elements are

five-faced prisms that have been generated from a random hexahedral mesh by splitting each interior



Fig. 5. Computational configuration and finite-volume meshes for the lid-driven cavity. Upper left: Computed steady state streamlines

on a 6400-element uniform Cartesian mesh. Upper right: A 2304-element Z-mesh. Lower left: A 1600-element random mesh with

a ¼ 0:5. Lower right: A 3044-element mixed-element mesh based on a 40� 40, a ¼ 0:5 random mesh. For the two lower meshes,

element faces on both z¼ constant planes are shown.

Y.Z. Zhang, D.C. Haworth / Journal of Computational Physics 194 (2004) 156–193 171
hexahedral element into two prisms. While structured meshes would suffice for the first three mesh types,

here vertex and element id�s have been randomized (in some cases) to ensure that the unstructured-mesh

pointer structures are fully exercised. Examples of the computational meshes employed (mesh type, number

of elements NE and ratio of maximum to minimum element volume Vmax=Vmin) are provided in Table 1.

While element volumes do not vary greatly, departures from orthogonality are significant for the non-

uniform meshes. Meshes having considerably larger element volume ratios (exceeding a factor of 105) are

considered in later test cases.
The Z-mesh (e.g., [40]) and random mesh (e.g., [41,42]) both have been employed extensively as ar-

chetypical non-orthogonal meshes in the development and validation of CFD algorithms. For the random



Table 1

Lid-driven cavity examples

Case NEðaÞa Vmax=Vmin Cþ
glob Npe min =nom=max rþ q0

rms@ tþ ¼ 10

dpkmax@ tþ ¼ 10

Stage 1 Stage 2 Stage 3b

U1 400 1.0 1.0 30/40/80 0.5 2.90 0.364 0.0997

47.2 1.92 0.296

U2 1600 1.0 1.0 30/40/80 0.5 3.96 0.430 0.0991

153.0 4.66 0.394

U3 6400 1.0 1.0 30/40/80 0.5 4.48 0.624 0.103

354. 14.1 0.420

Z1 2304 4.0 0.2 30/40/80 0.5 2.23 0.297 0.0744

98.5 3.39 0.389

Z2 2304 4.0 1.0 30/40/80 0.5 2.51 0.677 0.120

83.7 17.1 0.545

Z3 2304 4.0 5.0 30/40/80 0.5 2.97 1.57 0.151

117. 48.0 0.742

R1 1600 2.6 0.1 30/40/80 0.5 3.00 0.199 0.0486

(0.5) 117. 0.998 0.199

R2 1600 2.6 1.0 30/40/80 0.5 4.40 0.454 0.104

(0.5) 173. 4.16 0.527

R3 1600 2.6 5.0 30/40/80 0.5 4.59 0.828 0.139

(0.5) 179. 11.9 0.975

M1 3044 6.5 1.0 20/40/80 0.5 2.39 0.313 0.141

(0.5) 125. 5.61 0.729

M2 3044 6.5 1.0 40/80/160 0.5 1.69 0.182 0.068

(0.5) 89.8 2.73 0.479

M3 3044 6.5 1.0 80/160/320 0.5 1.96 0.178 0.0524

(0.5) 99.2 2.18 0.345

All timescales are equal to the computational timestep Dt. Case names beginning with ‘‘U’’ are uniform meshes; with ‘‘Z’ re Z-meshes; with ‘‘R’’ are random meshes;

and with ‘‘M’’ are mixed-element (prism/hex) meshes.
a a is relevant only for random meshes and for mixed-element meshes (Eq. (25)).
bA stationary distribution is achieved only with Stage 3.
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mesh, the (x; y) location of the ijth interior vertex (26 i6Nx � 1; 26 j6Ny � 1, with Nx ¼ Ny ¼ N 1=2
E þ 1) is

given by,

xij ¼
i� 1þ aðgij;x � 0:5Þ

Nx � 1
;

yij ¼
j� 1þ aðgij;y � 0:5Þ

Ny � 1
;

ð25Þ

where gij;x and gij;y each are sampled from a random distribution uniform on [0., 1.]. The parameter a
controls the mesh quality; a uniform orthogonal mesh corresponds to a ¼ 0, and mesh quality deteriorates

with increasing a. Moreover, different random numbers have been used to generate the meshes on the two
z ¼ constant planes so that the mesh distortion is three-dimensional, even though the flow is two-dimen-

sional. A mixed-element mesh is included to demonstrate that the algorithm as derived applies immediately

to degenerate hexahedra, as discussed in Appendices A and B.

A converged steady solution first is obtained using the FV solver and a time-marching algorithm. An

ensemble of computational particles having approximately uniform particle number density in physical

space is initialized such that the mass of particles in each FV element is equal to the FV element mass; this is

taken as time t ¼ 0. Particle positions and velocities then are advanced in time according to,

x�i ðt þ DtÞ ¼ x�i ðtÞ þ U �
i ðtÞDt;

U �
i ðtÞ ¼ U �

i;FV þ 1

2

ojU �
FVj

2

oxi
r2
U þ jU �

FVjrUgi=Dt
1=2:

ð26Þ

Here U �
FV � UFVðx�ðtÞÞ where UFVðxÞ is obtained via interpolation from the FV-computed velocity field,

g is a vector of three independent identically distributed random numbers sampled from a standardized

Gaussian distribution (zero mean, unit variance), and rU is a ‘‘noise’’ parameter for the particle velocity

distribution; ðjU �
FVjrU Þ2 is an effective diffusivity. For rU ¼ 0, particles move as fluid particles in the limit

Dt ! 0 (the particle tracking limit). There is no feedback of particle-based quantities into the FV com-

putation.

The particle mass distribution is monitored as a function of normalized time, tþ � t=T ¼ tUW =L. Ide-
ally, the particle mass distribution should remain equal to the initial uniform mass distribution. The

principal quantity of interest then is the deviation between the element-level particle mass density qk
P

(particle mass in element k, divided by the element volume) and the FV mass density qk
FV (here qk

FV � 1,

k ¼ 1; . . . ;NE):

dqk � qk
P � qk

FV

qk
FV

: ð27Þ

A global indicator of the deviation between the particle and FV mass distributions is the root-mean-
square value of dqk over the computational domain:

q0
rms �

PNE
k¼1 dqkð Þ2

NE

" #1=2

: ð28Þ

A systematic study has been carried out to quantify the effects of variations in mesh density (number of

FV elements NE), mesh quality (non-uniformity of element volumes and departures from orthogonality),

number of computational particles NP , computational time step Dt and velocity noise level rU . Key pa-

rameters are: the nominal, minimum and maximum number of particles per element Npe;nom � NP=NE,
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Npe;min and Npe;max; the normalized particle velocity noise level rþ � rU=Dt1=2 and a global ‘‘particle Courant

number’’,

Cþ
glob � UWDtN

1=2
E =L; ð29Þ

normalized mesh size,

hþ � L=N 1=2
E ; ð30Þ

time-averaging parameters sS3 (Eq. (22)), savg;P (Eq. (24)) and sS30 ðsavg;FV is not relevant for this steady flow);

and mesh type (Table 1). Unless otherwise specified, sS3 ¼ savg;P ¼ sS30 ¼ Dt (the computational time step).

Example results for a highly distorted Z-mesh (Fig. 5) are given in Figs. 6 and 7. There

NE ¼ 2304 ðhþ ¼ 0:02083Þ, Npe;nom ¼ 40, Npe;min ¼ 30, Npe;max ¼ 80, Cþ
glob ¼ 1:0 and rþ ¼ 0:5.

Time evolution of the instantaneous rms mass density deviation (Eq. (28)) is plotted in Fig. 6; instan-

taneous fields of the element-level mass density deviation (Eq. (27)) at time tþ ¼ 10 are shown in Fig. 7.

Results are shown for different specifications of the particle mean advection velocity: no correction (Stage 1

only), first-level velocity correction (Stages 1 and 2) and second-level position correction (Stages 1–3).
Several observations can be made. First, in the absence of any correction the deviation between particle and

FV mass distributions increases continuously in time; particles accumulate in the upper right-hand corner

of the domain near the intersection of the driven and fixed walls, where velocity gradients are steep and

vertex velocity specification is ambiguous. Second, activation of Stage 2 reduces the deviation by more than

one order of magnitude; however, the deviation continues to increase in time. And third, activation of the

Stage 3 particle position correction reduces the deviation even further; equally significant, the deviation

becomes statistically stationary, as it should for this steady flow.

Qualitatively similar results have been found for all cases investigated (Table 1). Figs. 8 and 9, for ex-
ample, show the time evolution of the instantaneous rms mass density deviation with variations in global

particle Courant number Cþ
glob and particle number density Npe;nom for a random mesh ðNE ¼ 1600, a ¼ 0:5,
Fig. 6. Time evolution of instantaneous rms mass density deviation over the computational domain q0
rms (Eq. (28)) for the lid-driven

cavity using the 2304-element Z-mesh of Fig. 5. Parameter values correspond to Case Z2 in Table 1 ðNE ¼ 2304, Cþ
glob ¼ 1:0,

Npe;nom ¼ 40, rþ ¼ 0:5Þ.



Fig. 7. Instantaneous element-level mass density deviation dqk (Eq. (27)) at time tþ ¼ 10 for the lid-driven cavity using the 2304-el-

ement Z-mesh of Fig. 5. Parameter values correspond to Case Z2 in Table 1. Upper left: Stage 1. Upper right: Stages 1 and 2. Lower:

Stages 1, 2 and 3.
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Npe;nom ¼ 40, rþ ¼ 0:5) and for a mixed-element mesh (NE ¼ 3044, a ¼ 0:5, Cþ
glob ¼ 1:0, rþ ¼ 0:5), respec-

tively. Again, stationary distributions are realized only with the Stage 3 correction, and the magnitude of

the deviation decreases with decreasing Cþ
glob and with increasing Npe;nom.

Further examples illustrating the behavior of the rms and maximum instantaneons mass density devi-
ation with variations in global particle Courant number Cþ

glob (Eq. (29)), particle velocity noise level rþ (Eq.

(26)), particle number density Npe;nom and relative mesh size hþ (Eq. (30)) are provided in Fig. 10. These

results have been obtained for uniform meshes; similar results are found for all mesh types (Table 1). Key

findings are as follows. First, in the absence of the Stage 3 particle position correction, mass deviations



Fig. 8. Effect of variations in global particle Courant number Cþ
glob on evolution of instantaneous rms mass density deviation over the

computational domain q0
rms (Eq. (28)) for the lid-driven cavity using a random mesh. Parameter values correspond to Cases R1 and R3

in Table 1 ðNE ¼ 1600; a ¼ 0:5, Npe;nom ¼ 40, rþ ¼ 0:5Þ. Solid lines: Stage 1. Dashed lines: Stages 1 and 2. Dash-dot lines: Stages 1, 2

and 3. Lines without symbols: Cþ
glob ¼ 0:1. Lines with symbols: Cþ

glob ¼ 5:0.

Fig. 9. Effect of variations in particle number density Npe;nom on evolution of instantaneous rms mass density deviation over the

computational domain q0
rms (Eq. (28)) for the lid-driven cavity using a mixed-element mesh. Parameter values correspond to Cases M1

andM3 in Table 1 ðNE ¼ 3044, a ¼ 0:5, Cþ
glob ¼ 1:0, rþ ¼ 0:5Þ. Solid lines: Stage 1. Dashed lines: Stages and 2. Dash-dot lines: Stages 1,

2 and 3. Lines without symbols: Npe;nom ¼ 40. Lines with symbols: Npe;nom ¼ 160.
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develop and grow in time even in the limit Dt ! 0 and Npe;nom ! 1. This results from non-uniformities in

the particle mass density distribution within FV elements (sub-grid-scale non-uniformity). Second, sta-

tionary distributions are realized only with the Stage 3 particle position correction, and the mass density
deviation varies most strongly with variations in Cþ

glob and Npe;nom. And third, with the Stage 3 particle



Fig. 10. Instantaneous global rms mass density deviation q0
rms (Eq. (28)) and maximum element-level mass density deviation dqk

max (Eq.

(27)) at time tþ ¼ 10 for the lid-driven cavity using a uniform mesh. Upper left: Variations in global particle Courant number Cþ
glob (Eq.

(29)) with NE ¼ 1600, Npe;nom ¼ 160, rþ ¼ 0:1. Upper right: Variations in particle velocity noise level rþ Eq. (26) with NE ¼ 1600,

Cþ
glob ¼ 0:1, Npe;nom ¼ 160. Lower left: Variations in particle number density Npe;nom with NE ¼ 1600, Cþ

glob ¼ 0:1, rþ ¼ 0:1. Lower right:

Variations in relative mesh size hþ with Cþ
glob ¼ 0:1, Npe;nom ¼ 160, rþ ¼ 0:1. Squares: Stage 1. Triangles: Stages 1 and 2. Circles: Stages

1, 2 and 3. Solid lines: rms (left scale). Dashed lines: maximum (right scale).
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position correction activated, the element-level mass density deviation can be driven to arbitrarily small

values for any hþ and rþ in the limit Cþ
glob ! 0 and Npe;nom ! 1.

In the cases examined so far, the timescales sS3, savg;P and sS30 have been equal to the computational time

step Dt. As discussed earlier, this corresponds to forcing the instantaneous particle mass distribution to

remain consistent with the FV mass distribution at the element level, and goes beyond the formal con-
sistency requirement that applies only to the mean particle mass distribution. The effects on mass density

deviation and on the magnitudes of the correction velocities of variations in each of these several timescales

have been explored; one example is provided in Fig. 11. There the time evolution of the instantaneous rms

mass deviation is plotted for a coarse uniform mesh (NE ¼ 400, rþ ¼ 0:0, Cþ
glob ¼ 1:0, Npe;nom ¼ 160) with

variations in savg;P and sS30 ðsS3 ¼ DtÞ. It can be seen that variations in savg;P have little effect, while the mass

density deviation increases with increasing sS30 .
In general, the benefits in accuracy and computational efficiency resulting from variations in the several

algorithm time scales have been found to be small. Henceforth, all timescales are taken to be equal to the
computational time step Dt.



Fig. 11. Time evolution of instantaneous rms mass density deviation over the computational domain (Eq. (28)) for the lid-driven cavity

using a 400-element uniform mesh ðNE ¼ 400, Cþ
glob ¼ 1:0, Npe;nom ¼ 160, rþ ¼ 0:0Þ with variations in savg;P sS30 .
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Velocity correction magnitudes are plotted in Figs. 12 and 13. Normalized particle velocity correction

magnitudes for Stages 2 and 3 are defined as,

v�corr;2 � jÛ j�=UW ; v�corr;3 � j ^̂U j�=UW : ð31Þ

Maximum and rms values over the computational domain then are computed:

v�3;max � max
i¼1;...;NP

fvðiÞcorr;3g; v�3;rms �
PNP

i¼1 vðiÞcorr;3
	 
2

NP

264
375

1=2

ð32Þ

and similarly for Stage 2.
Fig. 12. Time evolution of maximum and rms Stage 3 normalized velocity corrections over the computational domain (Eq. (32)) for

the lid-driven cavity using a 1600-element uniform mesh ðNE ¼ 1600, Cþ
glob ¼ 0:1, Npe;nom ¼ 160, rþ ¼ 0:1Þ. Circles: Stage 2 activated.

Triangles: Stage 2 deactivated. Solid lines: rms values. Dashed lines: maximum values.



Fig. 13. Instantaneous global maximum and rms normalized velocity correction magnitudes (Eq. (32)) at time tþ ¼ 10 for the lid-

driven cavity using a uniform mesh. Upper left: Variations in global particle Courant number Cþ
glob Eq. (29) with NE ¼ 1600,

Npe;nom ¼ 160, rþ ¼ 0:1: Upper right: Variations in particle velocity noise level rþ (Eq. (26)) with NE ¼ 1600, Cþ
glob ¼ 0:1, Npe;nom ¼ 160.

Lower left: Variations in particle number density Npe;nom with NE ¼ 1600, Cþ
glob ¼ 0:1, rþ ¼ 0:1: Lower right: Variations in relative mesh

size hþ with Cþ
glob ¼ 0:1, Npe;nom ¼ 160, rþ ¼ 0:1. Circles: Stage 3 correction magnitude. Triangles: Stage 2 correction magnitude. Solid

lines: rms values. Dashed lines: maximum values.
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Fig. 12 shows that the required Stage 3 velocity correction magnitude is considerably lower with Stage

2 in place. Moreover, the steady-state rms mass density deviation is approximately 10% lower with Stage

2 active, compared to applying the Stage 3 correction directly to the Stage 1 velocity field without Stage 2

(not shown). The variations in the maximum and rms Stage 2 and Stage 3 normalized correction velocity

magnitudes with changes in global particle Courant number, particle velocity noise level, particle number

density and relative mesh size are shown in Fig. 13. Particle number density has the largest effect; the

Stage 3 correction velocity decreases monotonically as the number of particles per element increases. For

fixed particle number density, the required correction velocities increase for very small particle Courant
numbers.
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6.2. A variable-density free jet

Jets of freon-12 (dichlorodifluoromethane) into air were studied by Arcoumanis et al. [43] to investigate
fundamental aspects of turbulent mixing with large density variations, for application to in-cylinder fuel

injection in reciprocating-piston internal-combustion engines. Rayleigh scattering was used to extract en-

semble-averaged (in a simplified engine configuration) or time-averaged (in a free jet configuration) profiles

of freon mole fraction mean and variance. This configuration has been the subject of one earlier modeling

study [4]. Here the freon/air jet serves to exercise the mass consistency algorithm in a configuration that has

inflow/outflow boundaries and large spatial variations in mass density that are comparable to those

encountered in a practical turbulent combustion system.

Freon vapor is injected at 3.9 m/s into stagnant air through a 10 mm diameter orifice. The computational
configuration is a 10� wedge (axisymmetric) mesh of 3968 non-uniform elements, with a, single element in

the azimuthal direction. The ratio of maximum to minimum element volume is 1:9� 104. A time-marching

algorithm is used to obtain a stationary solution to the governing equations. Results have been obtained

using two different physical models: a moment closure (modeled equation for freon mass fraction variance),

and a composition PDF method; in both cases, a standard k � e model has been used for turbulent

transport. The two models are almost (but not exactly) equivalent at the second-moment level; details are

provided in Subramaniam and Haworth [4]. Here approximately 200 K particles have been used for the

composition PDF calculations (Npe;nom � 50): a simple pair-exchange stochastic mixing model has been
used to simulate mixing [2] (d/�

mix
term in Eq. (6)); and there is no chemical reaction.

The mixture mass density and specific heats are prescribed assuming an ideal-gas mixture of freon and

air. With Ya, va and Wa denoting the mass fraction, mole fraction and molecular weight, respectively, for

species a, the following relations pertain:

va ¼ YaW =Wa; Ya ¼ vaWa=W ;

W ¼
XNS

a¼1

Wava ¼
XNS

a¼1

Ya=Wa

" #�1

; q ¼ pW ðRT Þ�1
:

ð33Þ

Here W is the mixture molecular weight, R is the universal gas constant and Wfreon=Wair ¼ 4:19. Ne-

glecting the influence of pressure fluctuations on mixture mass density (appropriate for low Mach number),

the mean mixture mass density hpi is given by,

hqi ¼ pR�1hW =T i: ð34Þ

Since the present focus is on particle/FV mass consistency and not on the treatment of the energy

equation, we further neglect the influence of temperature fluctuations on mixture mean mass density. The

equation of state used to prescribe the mean mass density is then,

hqi ¼ pðRT Þ�1hW i; ð35Þ

where pð¼ hpiÞ and T ð¼ ~T Þ are computed using the FV algorithm and hW i is evaluated based on particle

compositions. The mixture specific heat is computed as,

cp ¼ Yfreoncp;freon þ Yaircp;air ð36Þ

with cp;freon ¼ 601 J/kg K and cp;air ¼ 1009 J/kg K. In the moment closure, fluctuations in molecular weight

effectively are neglected.

Fig. 14 shows computed steady-state freon mole fraction variance contours for the moment closure and

the PDF models. The composition PDF yields higher peak variance, and steeper radial gradients. The



Fig. 14. Computed contours of neon mole fraction variance using a moment closure (left: modeled variance equation) and a com-

position PDF method (right: Stages 1, 2 and 3). The PDF results have been time averaged to reduce statistical noise.
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variance is a key quantity in non-premixed turbulent combustion. In the case of a chemically reacting

turbulent jet flame, for example, the mean reaction rate would be (approximately) proportional to the fuel

mass fraction variance.

A quantitative comparison between computations and measurements is provided in Fig. 15. There the

quantity plotted is the rms freon mole fraction, normalized by the local mean value: gx002freon 1=2ðzÞ= gvfreonðzÞ.
Fig. 15. Computed (lines) and measured, (symbols; [43]) centerline profiles of normalized rms freon mole fraction. Solid line: moment

closure. Dashed line: composition PDF method with Stage 1 only. Dotted line: composition PDF method with Stages 1, 2 and 3. Here

no time averaging has been performed for the PDF results.
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The PDF method yields a higher variance that is closer to the experimentally measured value, compared to

the moment closure. The effect of the mass consistency algorithm also is evident in Fig. 15. In the absence of

any corrections (Stage 1 only), the PDF model fails to capture the ‘‘potential core’’ of the freon jet close to
the nozzle exit.

The moment closure solution can be brought closer to the experimental measurements with further grid

refinement, while the PDF results shown are nearly grid independent. This serves to illustrate an important

advantage of the Lagrangian particle approach: numerical dissipation is inherently low and accurate so-

lutions can be obtained using coarser computational meshes than those required for an equivalent moment

closure.

Finally, the global rms mass density deviation over the computational domain (Eq. (28)) is plotted as a

function of time in Fig. 16. There tþ ¼ tUj=Dj, where Uj and Dj are the freon nozzle velocity and diameter,
respectively. As was seen earlier for the lid-driven cavity, the error is much lower with the corrections active;

and again, a stationary error distribution is realized only with Stage 3 active.
6.3. A simplified piston–cylinder assembly

As a final example, we consider turbulent flow in a motored (no combustion) piston–cylinder assembly

that represents an idealized reciprocating-piston IC engine. The configuration studied experimentally by

Morse et al. [44] (Fig. 17) has been the subject of several CFD modeling studies. Here a velocity PDF
method is used to provide the effective turbulent stress (the Reynolds stress) terms that appear in the mean

momentum equations (Eq. (11)). The present emphasis is particle/FV mass consistency; relevant aspects of

the physical modeling and particle/FV coupling are discussed first for completeness.

A simplified Langevin model [45] has been used for particle velocities. This model corresponds to

isotropic dissipation and Rotta�s linear return-to-isotropy for the Reynolds stresses at the second-

moment level. Formally, it is the PDF of the fluctuating velocity (the difference between the local

instantaneous velocity and the local mean velocity) that is computed; see Muradoglu et al. [10], for

example. In that case, the particle fluctuating velocity is advanced over a computational time step
according to,
Fig. 16. Time evolution of instantaneous mis mass density deviation over the computational domain (Eq. (28)) for the freon jet.

Dashed line: Stage 1 only. Solid line: Stages 1, 2 and 3.



Fig. 17. The piston–cylinder assembly of Morse et al. [44].
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u00�i ðtþDtÞ ¼ u00�i ðtÞ � 1
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�
ohpi�
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Dt�U �

j

o ~U �
i

oxj
Dt� 1

2

�
þ 3

4
C0

�
u00�i Dt=sþ ðC0eDtÞ1=2gi:

ð37Þ

Here C0 ¼ 2:1 is a model constant, g is a vector of three independent identically distributed random

numbers sampled from a standardized Gaussian distribution (zero mean, unit variance) and s ¼ k=e is a

turbulence timescale. Again, this scheme is first-order in time. A standard k–e model with wall functions is

retained on the FV side to provide e and the turbulence timescale s [46]. More sophisticated velocity PDF

models (e.g., models that account explicitly for ‘‘rapid’’ pressure terms [45]) and/or alternative forms of the

e equation are required to realize good quantitative agreement with experimental measurements in this

configuration. No comparisons with experimental measurements are offered here.

The Reynolds stresses are estimated from particle values using the mean-estimation algorithm described
by Subramaniam and Haworth [4]. A robust coupling strategy has been devised where the standard k–e
model implicit diffusion term is retained in the FV mean momentum equations; an explicit source term then

is added to account for the difference between the particle-derived Reynolds-stress divergence and the k–e
diffusion term. This formally cancels the k–e term, and ensures a well-conditioned matrix in the implicit

momentum predictor (a ‘‘deferred correction’’ approach). This allows stable solutions to be obtained using

fewer computational particles and larger computational timesteps than would be required for a direct

implementation of the particle-derived Reynolds-stress divergence as a momentum-equation source term.

Still, the number of particles required remains larger (by at least a factor of two) than that required for a
composition PDF method.

Hybrid particle-mesh velocity PDF calculations have been performed for a variety of mesh densities and

particle number densities using two-dimensional (planar) meshes, axisymmetric (wedge) meshes and coarse

three-dimensional meshes. Example results at 90� after top-dead center on the intake stroke are shown in

Fig. 18; these are instantaneous contours (no averaging). Here results have been obtained using a 5890-

element 10� wedge mesh with a single element in the azimuthal direction. The ratio of maximum to min-

imum element volume is 2:5� 105. The nominal particle number density is Npe;nom � 120ðNP � 700; 000Þ;
particle number density control maintains the number of particles per element between 100 and 400. The
computational timestep is 5:2083� 10�5 s (1/16 crankangle degree at 200 r/min). Two engine cycles are

computed and results are shown for the second engine cycle.



Fig. 18. Computed Reynolds stress components at 90� after piston top-dead center on the intake stroke for the simplified piston–

cylinder assembly [44]. Upper left: 2k=3; k–e model. Upper center: 2k/3. velocity PDF model. Upper right: gu00r u00z , velocity PDF model.

Lower left:gu00r u00r , velocity PDF model. Lower center: gu00hu00h velocity PDF model. Lower right: gu00z u00z velocity PDF model.
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The PDF calculation shows strong peaks in k in the shear layers at both the inside and the outside of the

annular intake jet, while a standard k–e model yields a strong peak only at the outside. In general, tur-

bulence levels from the PDF calculation tend to be higher than from k–e. There is significant anisotropy in

the PDF-computed normal stresses; mean-velocity-gradient production feeds the radial and axial com-

ponents (gu00r u00r and gu00z u00z ) while the azimuthal component ðgu00hu00h Þ relies solely on redistribution for its energy.

And by contrast to k–e, the PDF-based Reynolds stresses are realizable, by construction. Noise is evident in
the PDF solution; in spite of this, the numerical solution holds together reliably, even with the present

second-order centered advection scheme in the mean momentum equations.

Particle/FV mass consistency is examined by plotting the normalized deviation between the instanta-

neous in-cylinder particle mass MP ðtÞ and the instantaneous in-cylinder FV fluid mass MFVðtÞ:

�M ¼ �MðtÞ �
MP ðtÞ �MFVðtÞ

MFVðtÞ
: ð38Þ

For the parameter set used to generate Fig. 18, a stable solution through a full engine cycle could not be

obtained in the absence of the mass consistency algorithm. Results are shown instead for a coarse two-

dimensional planar mesh in Fig. 19 (1593 elements, Npe;nom < 100, 1/8-crankangle-degree computational
time step). The effect of the mass consistency algorithm is dramatic. In the absence of any correction (Stage



Fig. 19. Evolution of normalized difference between computed instantaneous in-cylinder particle mass and instantaneous in-cylinder

finite-volume fluid mass (Eq. (38)) for the simplified piston–cylinder assembly [44].
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1 only), the in-cylinder particle mass deviates from the fluid mass by more than 10% at piston bottom-dead-

center (180�). This implies that if the intake valve were to be closed at this instant, the trapped particle mass

representing fresh fuel–air mixture (in the case of a premixed-charge spark-ignition engine) would be in

error by more than 10%; this would have a significant impact on the subsequent mixing and combustion

event. With the Stage 3 correction in place, the mass deviation is reduced by approximately two orders of

magnitude over most of the engine cycle. Stage 1 results would improve with higher-order particle time

integration [34–36] and/or a smaller computational time step; here the maximum particle Courant number

(Eq. (20)) exceeds 10. But this example using a low-order particle scheme and large computational time step
serves well to illustrate the robustness of the mass consistency algorithm.

CPU times with and without the mass consistency algorithm are compared in Table 2; the total number of

computational particles is the same in both cases (to within less than 1%). The computational overhead

essentially is that of performing one additional pressure correction per timestep; that cost is more than

compensated by reductions in computational effort in other parts of the code. There is a significant reduction

in particle number density control, in particular. Fewer cloning and annihilation operations are required

because the spatial distribution of particle mass/volume remains consistent with the local FV element mass/

volume. For this velocity PDF example, there is a small decrease in the computational effort required to solve
the FV pressure correction and mean momentum equations; that is a result of the smoother Reynolds stress
Table 2

Relative computational effort for Stages 1, 2 and 3 compared to Stage 1 alone

Description Stages 1, 2 and 3/Stage 1 alone

CPU time for particle number density control 0.50

Total CPU time for particle side 0.76

CPU time for FV pressure correction equationa 0.99

CPU time for FV mean momentum equations 0.98

CPU time in FV linear equation solversb 1.04

Total CPU time 0.87

Results are for a two-dimensional simplified piston–cylinder assembly (Fig. 17) using a velocity PDF method. There are 1593 FV

elements, Npe;nom � 100, the computational time step corresponds to 1/16-crankangle-degree of rotation at an engine speed of 200 rpm

and computations are from 360 to 540 crank-angle degrees.
a Excludes CPU time for the Stage 3 particle position correction.
b Includes CPU time for the Stage 3 particle position correction.
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fields that feed back into the mean momentum equations with the mass consistency algorithm activated. The

total time spent in the FV linear equation solvers (including the Stage 3 pressure correction) is slightly higher

with the mass consistency algorithm activated. Overall, the algorithm yields significant improvement in
accuracy (Fig. 19) with a net reduction in CPU time. Similar results have been found for other test cases.
7. Conclusion

The goal of this research has been to advance the accessibility of Lagrangian particle PDF methods for

modeling chemically reacting turbulent flows in complex engineering configurations. Towards that end a

robust, computationally efficient, accurate and general mass consistency algorithm has been developed that
is compatible with existing FV CFD codes used in research and in engineering applications.

The approach is to maintain consistency between mean particle mass and FV fluid mass at the FV el-

ement level. Key features of the algorithm include the central role played by FV element-face mass flow-

rates, a multi-stage approach to minimize the particle position correction (spatial redistribution of particles)

required in Stage 3, and direct use of the underlying FV solver�s elliptic pressure correction scheme to

compute a set of element-face mass flowrates that drives the difference between particle mass and fluid mass

towards zero at the element level.

The algorithm has been designed primarily with six-faced (hexahedral) FV elements and segregated
pressure-based CFD solvers in mind. However, it applies immediately to other element types (edge and face

degeneracies of hexahedral elements, including tetrahedra). And alternative interpolation strategies (other

than vertex-based trilinear basis functions) could be employed. In the case where a pressure correction

scheme is not available in the underlying CFD code to compute the Stage 3 element-face mass flowrates, a

separate elliptic equation could be implemented for that purpose (see [12], for example). The algorithm is

intended primarily for time-accurate computations, but can be used for steady flows as well.

Low-order methods have been used here to integrate the Lagrangian particle equations. This serves to

emphasize the robustness of the new algorithm. Higher-order particle schemes [34–36] can be used
immediately.

The direct computational overhead for the present mass consistency algorithm is essentially that of

performing one additional pressure correction step in the underlying FV CFD code. However, the pressure

correction equation for Stage 3 generally need not be solved to the same accuracy as that required for the

CFD flow solution itself. Moreover, with the mass consistency algorithm in place it has been found that the

time spent in particle-number-density-control operations (cloning/annihilation) is reduced significantly, and

solutions can be obtained using lower particle number densities and larger computational timestep than

otherwise would be required. Therefore, the net effect is generally a reduction in CPU time compared to
performing a hybrid particle/FV solution without the mass consistency algorithm.

Several parameters have been built into the algorithm to provide additional control and flexibility, in

particular for steady flows: for example, the timescales sS3 (Eq. (22)) savg;P and savg;FV (Eq. (24)), and sS30 . In
practice, little benefit in accuracy or efficiency has been found by setting any of these to be different from the

computational time step Dt. Thus the current recommended practice is to enforce particle/FV mass con-

sistency at the element level on each computational time step. Again, it is emphasized that this goes beyond

the formal requirement that applies only to the mean particle mass distribution.
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Appendix A. Trilinear mapping

Element and face local numbering conventions are indicated in Fig. 3. Local (logical) element coordi-

nates n1; n2 and n3 ð06 ni 6 1Þ are related to global coordinates x1; x2 and x3 in element e through a trilinear

mapping,

xi ¼
X8

m¼1

be;mðnÞxli ði ¼ 1; 2; 3Þ; ðA:1Þ

where

be;1ðnÞ ¼ ð1� n1Þð1� n2Þð1� n3Þ; be;2ðnÞ ¼ n1ð1� n2Þð1� n3Þ;
be;3ðnÞ ¼ n1n2ð1� n3Þ; be;4ðnÞ ¼ ð1� n1Þn2ð1� n3Þ;
be;5ðnÞ ¼ ð1� n1Þð1� n2Þn3; be;6ðnÞ ¼ n1ð1� n2Þn3;
be;7ðnÞ ¼ n1n2n3; be;8ðnÞ ¼ ð1� n1Þn2n3:

ðA:2Þ

Here l is the global vertex index corresponding to local element vertex m. The same trilinear basis

functions are used to establish continuous fields of computed mean dependent variables from vertex values
(an isoparametric representation).

On each element face, one of the three logical coordinates has the value zero or one, and the trilinear

mapping collapses to a bilinear mapping. Faces are not planar, in general. The outward-pointing face area

projection vector is defined as,

Af �
Z 1

0

Z 1

0

ox
og1

�
� ox
og2

�
dg1 dg2: ðA:3Þ

This is equivalent to one-half of the cross-product of two face diagonal vectors,

Af ¼ 1
2
ac!� bd

�!
; ðA:4Þ

where ac!¼ xc � xa , for example. The face projection area is Af ¼ ðAf � Af Þ1=2 and the face outward-

pointing unit normal vector nf is,

nf ¼ Af=Af : ðA:5Þ

The face-averaged value of any quantity U is given by,

U
f �

Z 1

0

Z 1

0

Uðg1; g2Þ
ox
og1

�
� ox
og2

�
dg1 dg2 � Af=ðAf � Af Þ: ðA:6Þ

In particular, the face centroid is found by taking U to be g1 and g2 in turn:

g1 ¼
1

2
þ 1

12
ð ab�!� dc

!Þ � Af=ðAf � Af Þ;

g2 ¼
1

2
þ 1

12
ðbc!� ad

�!Þ � Af=ðAf � Af Þ:
ðA:7Þ
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It is noteworthy that these forms yield the correct results for the area and centroid of a triangular face,

when two face vertices coincide [P.J. O�Rourke and M.S. Sahota, Los Alamos National Laboratory,

personal communication, 2002].
The face average of a quantity can be expressed in terms of values at the four face vertices,

Uf ¼
Xd

m¼a

kf ;mUl; where

kf ;a ¼ ð1� �g1Þð1� �g2Þ; kf ;b ¼ �g1ð1� �g2Þ;
kf ;c ¼ �g1�g2; kf ;d ¼ ð1� �g1Þ�g2:

ðA:8Þ

The element volume is defined by,

V e �
Z 1

0

Z 1

0

Z 1

0

ox
on1

�
� ox
on2

�
� ox
on3

dn1 dn2 dn3 ðA:9Þ

and volume-averaged quantities are defined by,

U
e �

Z 1

0

Z 1

0

Z 1

0

UðnÞ ox
on1

�
� ox
on2

�
� ox
on3

dn1 dn2 dn3=V
e: ðA:10Þ

The resulting expressions for the element volume V e and for the volume centroid n can be written in
terms the eight element vertex positions: those expressions are not central to the present development.

However, again it is noteworthy that they reduce to the correct forms for the volume and centroid of a

tetrahedron. The element-averaged value is given in terms of values at the eight element vertices by,

U
e ¼

X8

m¼1

Ke;mUl; where

Ke;m ¼ be;mðnÞ:
ðA:11Þ

Advantages of the trilinear mapping include relative simplicity, continuity of mean fields from element to

element across shared faces and natural accommodation of edge and face degeneracies (to zero length and

zero area, respectively). Other advantages in the context of PDF methods for chemically reacting turbulent

flows have been pointed out by Subramaniam and Haworth [4]. Moreover, in the present case trilinear basis
functions are compatible with the FV geometric computations that are employed in the underlying CFD

code.

A disadvantage is that it is relatively expensive to compute the values of the logical coordinates n that

correspond to a given physical position x within an element. That computation requires inverting the

nonlinear mapping of Eqs. (A.1) and (A.2). This type of computation arises in particle tracking, for ex-

ample, where a particle�s position is advanced in physical space and one needs to know the corresponding

logical coordinates for particle/mesh interpolation. This difficulty can be dealt with by making the following

approximation.
Approximate values of the logical coordinates n that correspond to a given physical position x can be

computed quickly in the case of planar element faces. Bilinear (in two dimensions) or trilinear (in three

dimensions) coordinates for an interior point can be estimated using the heights above the faces. In the two-

dimensional example of Fig. 4, for example,

g1 �
ha

h þ h
; g2 �

hb
h þ h

: ðA:12Þ

a c b d
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In three dimensions, an element face can be approximated as a plane that passes through the face

centroid (Eq. (A.7)) and whose normal is given by Eq. (A.5). This definition is consistent for the two el-

ements that share a given face. However, in general it allows physical positions x that lie in multiple FV
elements (more than one element for which 06 ni 6 1, i ¼ 1; 2; 3) or in no FV element (no element for which

06 ni 6 1, i ¼ 1; 2; 3). In practice, these ambiguities can be resolved using simple rules. With this approx-

imation, one does not automatically recover a consistent treatment for a tetrahedron. However, a direct

treatment for tetrahedra proceeds similarly, using heights above triangular faces as the basis functions/

logical coordinates [38].
Appendix B. Correction velocities

In this appendix the algebraic solution for element-level vertex correction velocities is outlined, and
characteristics of the resulting correction velocity field are discussed. The local element face and vertex

numbering convention of Fig. 3 is adopted (element faces indexed f ¼ 1–6, vertices indexed m ¼ 1–8); the

superscript e element index is dropped, for clarity. The element-face mass flux correction is abbreviated as

Qf : Qf ¼ Q̂e;f=Af (Eqs. (17) and (A.4)); and the vertex mean density–velocity product is abbreviated as

qmi : q
m
i ¼ qmÛ e;m

i . The same procedure applies to the Stage 3 correction, with
^̂Q
e;f

replacing Q̂e;f and
^̂U

e;m

i

replacing Û e;m
i .

B.1. Derivation

Six equations for the 24 qmi �s enforce the desired face mass fluxes (Eq. (16)),

Q1 ¼ ðk1;8q81 þ k1;4q41 þ k1;1q11 þ k1;5q51Þn11 þ ðk1;8q82 þ k1;4q42 þ k1;1q12 þ k1;5q52Þn12
þ ðk1;8q83 þ k1;4q43 þ k1;1q13 þ k1;5q53Þn13;

Q2 ¼ ðk2;6q61 þ k2;2q21 þ k2;3q31 þ k2;7q71Þn21 þ ðk2;6q62 þ k2;2q22 þ k2;3q32 þ k2;7q72Þn22
þ ðk2;6q63 þ k2;2q23 þ k2;3q33 þ k2;7q73Þn23;

ðB:1Þ

and similarly for each of the remaining four faces. The 24 weights kf ;m and the outward-pointing unit

normal vectors nfi are known from the element geometry and the trilinear mapping (Eqs. (A.8) and (A.5),

respectively); and the six face mass fluxes Qf are prescribed according to Eq. (17) (in the case of the Stage 2

correction) or Eq. (21) (in the case of the Stage 3 correction). The weights satisfy,X
m2f

kf ;m ¼ 1: ðB:2Þ

Eighteen equations impose the constraint of uniform density-normal velocity product across each face

(Eq. (18)):

q81n
1
1 þ q82n

1
2 þ q83n

1
3 ¼ q41n

1
1 þ q42n

1
2 þ q43n

1
3 ðface 1Þ

q81n
1
1 þ q82n

1
2 þ q83n

1
3 ¼ q11n

1
1 þ q12n

1
2 þ q13n

1
3 ðface 1Þ

q81n
1
1 þ q82n

1
2 þ q83n

1
3 ¼ q51n

1
1 þ q52n

1
2 þ q53n

1
3 ðface 1Þ;

q61n
2
1 þ q62n

2
2 þ q63n

2
3 ¼ q21n

2
1 þ q22n

2
2 þ q23n

2
3 ðface 2Þ

q61n
2
1 þ q62n

2
2 þ q63n

2
3 ¼ q31n

2
1 þ q32n

2
2 þ q33n

2
3 ðface 2Þ

q61n
2
1 þ q62n

2
2 þ q63n

2
3 ¼ q71n

2
1 þ q72n

2
2 þ q73n

2
3 ðface 2Þ

ðB:3Þ

and similarly for each of the remaining four faces (three additional equations per face).
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This set of 24 simultaneous linear equations in 24 unknowns has been solved using Matlab. The solution

can be manipulated into a fairly compact form. With

Dm ¼ Qf ðng � nhÞ þ Qgðnh � nf Þ þ Qhðnf � ngÞ
nf � ðng � nhÞ ; ðB:4Þ

where face indices f, g and h refer to the three element faces that share vertex m, and j
1
; j

2
and j

3
denoting

Cartesian unit vectors in the global x1; x2 and x3 directions, respectively, the solution can be written as,

qmi ¼ j
i
�Dm: ðB:5Þ

The vertex correction velocities are recovered by dividing by the vertex (mean) density: Û e;m
i ¼ qmi =q

m .

B.2. Degenerate hexahedra

Equivalent algorithms for alternative element shapes can be developed following the same procedure as

that outlined above for hexahedral elements. For example, a tetrahedral element has four faces

ðf ¼ 1; 2; 3; 4Þ, four vertices ðm ¼ 1; 2; 3; 4Þ, and all weights are equal to 1/3 ðkf ;m ¼ 1=3Þ. Four equations for
the 12 correction velocity components correspond to matching the specified face correction fluxes; and eight

others (two for each of the four faces) correspond to the constraint of uniform density-normal velocity

product across each face. The result for a tetrahedron is identical to Eq. (B.4). In fact, Eq. (B.4) applies

directly to any element where exactly three non-degenerate faces are shared by each vertex (e.g., prism,

tetrahedron) with f, g and h referring to the three non-degenerate faces. Slight modifications are required

for other element shapes (e.g., a pyramid).
B.3. Continuity of the correction field

The correction mass flowrates are continuous across element faces, by construction; the flowrates for the

two elements that share a face differ only in sign. However, the correction velocity field is not necessarily

continuous across element faces. In the case of orthogonal elements, the correction velocity field is con-

tinuous across element faces, and the value of the correction velocity at a vertex on a element face is the
same for the two elements that share the face. However, even for orthogonal elements the value of the

correction velocity at a vertex generally is different for those elements that share the vertex but do not share

a common face.
Appendix C. Pressure correction algorithm

The essential steps in the mean pressure/momentum/continuity coupling to advance the finite–volume

solution over one computational timestep are: (1) Momentum predictor – compute a new mean velocity

field using the current mean pressure field; this velocity field does not satisfy mean continuity at the element

level. (2) Pressure/velocity correctors – compute corrections to the mean pressure and mean velocity fields

to enforce element-level mean mass conservation. The momentum predictor and pressure corrector each

require the solution of a sparse implicit linear system that corresponds to a linearized discretized form of the

corresponding governing pde; the velocity corrector is explicit. The discretized momentum predictor and
pressure/velocity corrector equations are derived from Eqs. (11) and (12) using Eq. (10) as a constraint.

For present purposes, the feature of interest in the pressure algorithm is the computation of a set of

element-face mass flowrates that enforce element-level mass conservation. The full set of equations is
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lengthy; the essentials can be found in [27], for example. Only a skeletal outline is given here. Similar ca-

pabilities are available in other pressure-based FV solvers.

The element-centered pressure correction for FV element e, p̂e, is obtained from the solution of a sparse
implicit symmetric linear system of the form,

Ae;pp̂e �
Xn

f¼1

ðAf ;pp̂f Þ ¼ Re
_m þ Se

p : ðC:1Þ

Here superscript f refers to the neighboring FV element through face f of element e;Re
_m is the continuity

residual for element e and Se
p contains all other source-term contributions. The continuity residual is the

difference between the net rate of accumulation of mass in element e and the net rate of efflux of mass out of

element e through its n bounding faces (see Eq. (13)),

Re
_m ¼ meðt þ DtÞ � meðtÞ

Dt
þ
Xn

f¼1

Qe;f ;FV: ðC:2Þ

Here meðtÞ ¼ hqieðtÞV eðtÞ is the mean fluid mass in element e at time t, and a first-order forward time

difference has been used to approximate the time derivative. The residual Re
_m is non-zero following the

momentum predictor step; it is equal to zero following the first pressure/velocity corrector step. The

diagonal coefficients Ae;p, off-diagonal coefficients Af ;p and source terms Se
p are functions of the mesh

geometry, the current mean velocity field and fluid properties.

The explicit velocity corrector equation has the form,

Û e
i ¼

Xn

f¼1

ðAf ;Ui p̂
f Þ þ Se

Ui
; ðC:3Þ

where a similar notation has been used.

The element-face mass flowrates Q̂e;f ;FV then are explicit functions of the current velocity and pressure

fields,

Q̂e;f ;FV ¼
Xn

f¼1

ðBf ;ppf Þ þ
Xn

f¼1

ðBf ;UiU
f
i Þ þ Se

Q: ðC:4Þ

Immediately following the first pressure/velocity corrector step, the element-face mass flowrates satisfy,

�
Xn

f¼1

Q̂e;f ;FV ¼ Re
_m; ðC:5Þ

where Re
_m is the continuity residual from the end of the momentum predictor step.

The FV pressure algorithm thus provides a convenient and consistent way to compute element-face mass

flowrates that drive non-zero element-level continuity residuals to zero. In the present particle/FV mass
consistency scheme, a single FV pressure/velocity corrector step is taken with the element-level mass re-

siduals given by the difference between FV element mass and the mean particle mass in the element (Eq.

(22)). The resulting pressure and velocity correction fields are discarded. And the computed element-face

mass flowrates are used to construct the Stage 3 particle mean velocity correction field.
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